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We give a method for extracting an effective Hamiltonian from ab initio calculations that requires only
the calculated energies for the model space and the part of the calculated eigenvectors that correspond
to the model space. This method simplifies the extraction of phenomenological parameters that can be
compared with experiment. We demonstrate the method with an ab initio calculation for d states, which
is relevant to examining the 4fN−15d configurations of lanthanide and actinide ions.
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. Introduction

The spectra of rare-earth ions in crystals are commonly analysed
sing crystal–field models. In these models an effective Hamilto-
ian is constructed within a model space for an isolate rare-earth

on (in a crystal). The model space most commonly consists of
he 4fN configuration but other configurations, such as 4fN−15d,

ay also be considered. Parameters representing the various terms
n the Hamiltonian, the Coulomb interaction between the elec-
rons, spin–orbit interaction, crystal–field interaction, etc., are
etermined by fitting to observed energy levels, with ab initio cal-
ulations sometimes guiding the starting point [1].

Accurate ab initio calculations for the 4fNand 4fN−15d configu-
ations of rare-earth ion impurities in crystals are now becoming
vailable [2,3]. There are several reasons why it would be useful
o extract the commonly used effective Hamiltonian parameters
rom such calculations. The parameters give valuable insight into

he interactions in these systems. For some purposes minor changes
n the parameters would give better agreement with experiment,

hich could be crucial for calculating other properties of interest
uch as radiative or non-radiative transition rates. For many systems

∗ Corresponding author at: Department of Physics and Astronomy and Mac-
iarmid Institute for Advanced Materials and Nanotechnology University of
anterbury, Christchurch, New Zealand. Tel.: +64 3 364 2548; fax: +64 3 364 2469.

E-mail address: mike.reid@canterbury.ac.nz (M.F. Reid).

925-8388/$ – see front matter © 2009 Published by Elsevier B.V.
oi:10.1016/j.jallcom.2008.12.004
it will be more practical to use ab initio calculations to determine
crystal–field parameters for simple ions such as Ce3+, and use those
as input for effective Hamiltonian calculations in more complex
systems.

In cases of high site symmetry, such as octahedral, only one
crystal–field parameter is required to parameterize the crystal–field
splitting of the 5d configuration of Ce3+and in that case it is a simple
matter to determine the parameter (10Dq or B4

0 depending on the
convention used) from the calculated energies. However, for most
site symmetries the number of crystal–field parameters is greater
than or equal to the number of 5d energy levels, so fitting the param-
eters to the ab initio energy levels, as was done in Ref. [4], is not
practical.

A better alternative is to construct a full effective Hamiltonian
from the ab initio calculation, and then solve for the parameters.
We show that the effective Hamiltonian that we require can be
constructed from an ab initio calculation as long as we know the
energies and the eigenvector components of the states within our
model space in the ab initio wave-functions. An important point is
that the full wave-function is not needed, only the components cor-
responding to the model space. We demonstrate the method with
a simple example of a d-electron calculation.
2. Effective Hamiltonians

In this section we show how to construct an effective Hamilto-
nian using the eigenvalues and eigenvectors obtained from ab initio

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:mike.reid@canterbury.ac.nz
dx.doi.org/10.1016/j.jallcom.2008.12.004
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alculations. The theory of effective Hamiltonians has been exten-
ively discussed by Hurtubise and Freed [5] and we have made use
f some of these concepts in earlier papers [6,7].

The eigenstates of a quantum mechanical system may be written
s

 i = Ei i (i = 1,2, . . . ,∞), (1)

here Ei and i are the eigenvalues and eigenvectors, respectively.
sually, we are interested in a limited number of eigenvalues and

heir corresponding eigenvectors. This smaller space, of dimension
, is called the model space. Within this space we can construct an

ffective Hamiltonian Heff which has eigenstates in the model space
i that yield energies identical to those for full Hamiltonian:

eff�i = Ei�i (i = 1,2, . . . ,M). (2)

t is important to note that the �i are not the same as the i, which
ay contain large admixtures of other functions. Furthermore, the

hoice of the �i is not unique. For example, we may use a model
pace consisting of 4fN and 4fN−15d configurations of a trivalent lan-
hanide ion, but the “true” states contain mixtures of other orbitals
n the ion and its ligands’.

The eigenstates  i and �i may be expanded by a set of bases.
e denote the complete set of bases as |j〉 (j = 1,2, . . . ,∞). For

onvenience we may arrange our bases in such a way that, the first
bases are chosen to be the bases of the model space and the first M

tates are chosen to be those states whose major component bases
ay be written as

i =
∞∑

j=1

|j〉Vji (3)

nd its projection into the model space as

 P)i =
M∑

j=1

|j〉Vji. (4)

ere V = {Vji} (j, i = 1,2, . . . ,∞) is the matrix formed by all eigen-
ectors and VP = {Vji} (j, i = 1,2, . . . ,M) the projection of the first

states into the model space. Note that the ( P)i are generally not
ormalized or orthogonal and so are usually not the best choice

or the model-space wave-functions, �i. It is not guaranteed that
P is non-singular but for any practical systems we assume VP is
on-singular so that its inverse V−1

P exists.
The set of original eigen-equations (Eq. (1)) can be written in

atrix form as

V = VE. (5)

ere E = diag(E1, E2, . . . , E∞) is a matrix where the diagonal ele-
ents are the eigenvalues and all other elements are zero. We also

efine EP = diag(E1, E2, . . . , EM) for later use.
A straightforward definition of a (non-Hermitian) effective

amiltonian HNH
eff is

NH
eff = VPEPV−1

P . (6)

he eigen-equation

NH
eff VP = VPEP (7)

ives exactly the same eigenvalues as Eq. (5) for the first M states
nd the model-space eigenvectors are the columns of VP . However,
hose eigenvectors are neither normalized nor orthogonal, and the
ffective Hamiltonian HNH

eff is not Hermitian, so this is not a suitable

hoice for comparison with a crystal–field Hamiltonian, which is
xplicitly constructed to be Hermitian.

Instead of usingHeff, a Hermitian effective HamiltonianHeff may
e constructed (e.g. Ref. [5] Eq. 2.11). Here we show that the con-
truction requires only the energies and the part of the eigenvectors
ompounds 488 (2009) 591–594

that fall within the model space (VP). We begin by constructing the
orthonormal eigenvectors VK :

VK = ((VPV
†
P)

−1
)
1/2
VP. (8)

It is noted that since V−1
P is assumed to be non-singular, (VPV

†
P)

−1

exists and is positive-defined hermitian matrix, which is diagonal-

izable, and hence the square root of (VPV
†
P)

−1
is then well-defined

(though there are, of course, arbitary phases involved in solving for
eigenvectors). Standard numerical methods may be used to calcu-

late (VPV
†
P)

−1/2
directly.

The Hermitian effective Hamiltonian is therefore:

Heff = VKEPV−1
K . (9)

We now have the effective eigenvalue equation (see Eq. (2)):

HeffVK = VKEp, (10)

with a Hermitian effective HamiltonianHeff and orthonormal eigen-
states:

V †
KVK = 1P. (11)

Hence, with the M eigenvalues EP and the components of their
eigenvectors in the designated model space, VP , we can use Eqs. (8)
and (9) to construct a Hermitian effective Hamiltonian Heff, whose
eigenvectors are given byVK . Extraction of the complete eigenstates
is not required, which drastically simplifies the process.

Other properties of the system, such as dipole moments, may
also be calculated using equations analogous to Eq. (9).

3. Solving for the effective Hamiltonian parameters

The “crystal–field” approach is to write a parameterized model-
space Hamiltonian in terms of Np parameters and operators:

Heff =
Np∑

˛=1

P˛T˛. (12)

Here the P˛ are the parameters. The T˛ are the matrices of
operators which represent the various interactions, such as the
Coulomb interaction between the electrons, spin–orbit interaction,
crystal–field interaction and so on.

If the operators span the model space we can expand the effec-
tive Hamiltonian exactly using elementary linear algebra. This is
particularly simple if the operators are orthogonal, but if not, as
long as they are linearly independent it is possible to construct a
set of Np equations

Hˇ = tr(T†
ˇ
Heff) (13)

=
Np∑

˛=1

Aˇ˛P˛, (14)

where

Aˇ˛ = tr(T†
ˇ

T˛). (15)

Since A is non-singular when the set of Np operators T˛ are linearly
independent, we can solve for the parameters

P˛ =
Np∑(

A−1
)
Hˇ =

Np∑(
A−1

)
tr(T† Heff). (16)
ˇ=1
˛ˇ

ˇ=1
˛ˇ ˇ

In most cases the crystal–field Hamiltonian will include only the
operators representing the most important interactions in the
expansion Eq. (12). If those operators do not form a complete set we
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Table 2
Crystal–field parameters for 3d states of VF4

+. Units are cm−1.

Parameter d set 1 d set 2

B2
0 409 464

B2
1 69 72

B2
2 −514 −541

B4
0 5748 5792

B4
1 2615 2605

B4
2 −6738 −6717
M.F. Reid et al. / Journal of Alloys

an still use Eq. (16) to calculate the strength parameters. However,
here will be a residue since the expansion Eq. (12) will not give an
xact fit.

. Example

The methods described in the previous section could be applied
o ab initio calculations for a range of physical systems. For sim-
licity we shall focus on an example relevant to systems with
ilute transition metal or lanthanide ions, where the model space

s composed of d or f orbitals on a particular ion. However, it
ould also be possible to apply the methods to concentrated sys-

ems, where magnetic anisotropy is of great concern. However,
n such systems the transformation to the model space would be
ather complex, since the calculation involves states that are not
ocalized.

As an example we present the results from a density-functional
alculation of the 3d orbital energies and wave-functions in VF4

+

olecule. It is noted that this molecule itself is not of particu-
ar interest but is a simple example to demonstrate the method.
his system is similar to the 5d1 problem for dilute Ce3+ ions

n crystals. The calculations were done with the program Guas-
ian 2003 [8] and made use of density functionals. For illustrative
urposes we have chosen a calculation with empty 3d orbitals
erely to avoid the complication of dealing with partially occupied

rbitals.
Since we want to illustrate our method for low symmetries we

id not restrict the geometry to be tetrahedral. In the final opti-
ized calculation there is a threefold symmetry axis approximately

long the X-axis. However, the final geometry is close to tetrahedral,
hich is clear from the approximate two- and threefold degenera-

ies of the energies of the 3d states.
Energies for the 3d states are given in Table 1. The spin–orbit

nteraction was not included so there are five states of interest. The
oefficients associated with the first two sets of Gaussian functions
f d nature in the eigenvectors are also given. The eigenvector coef-
cients for these two sets differ by a factor of approximately 2, but

he ratio depends on the energies of the states. In a crystal–field
alculation the radial function are usually considered to be con-
tant, but this restriction does not apply to the ab initio calculation.

onsequently, we will obtain a slightly different effective Hamil-
onian from the coefficients of each of the two sets of eigenvector
omponents. However, in either case the calculated energies will
e exactly reproduced.

able 1
alculated 3d energies and wave-functions for VF4

+from Gaussian 03 [8]. Energies
re given in cm−1relative to the configuration average. Note that there are 6 Guassian
rbitals rather than the 5 linearly independent orbitals expected for the 3d config-
ration. It is straightforward to transform each column of the wave-functions into a
vefold bases in terms of the spherical harmonic functions Y2

m . “d set 1” and “d set
” contain the largest eigenvector coefficients of the five 3d states.

nergies −3999 −3992 2650 2661 2680

set 1
5XX −0.01697 0.03591 0.70002 −0.02945 −0.02230
5YY −0.30254 −0.19785 −0.35082 −0.31824 0.37644
5ZZ 0.31950 0.16195 −0.34936 0.34768 −0.35414
5XY 0.43534 0.38356 −0.01154 −0.28186 0.28972
5XZ −0.36104 0.45825 −0.05186 −0.24985 −0.30787
5YZ −0.23534 0.32092 0.00906 0.45033 0.36917

set 2
6XX −0.00813 0.01724 0.30897 −0.01291 −0.00979
6YY −0.14544 −0.09515 −0.15443 −0.14010 0.16573
6ZZ 0.15368 0.07784 −0.15379 0.15307 −0.15591
6XY 0.20919 0.18432 −0.00509 −0.12382 0.12731
6XZ −0.17349 0.22020 −0.02286 −0.10976 −0.13526
6YZ −0.11317 0.15434 0.00402 0.19826 0.16254
B4
3 844 842

B4
4 8321 8380

Since spin is ignored the effective crystal–field Hamiltonian may
be written as

Heff =
∑

k=2,4

k∑

q=−k
BkqC

(k)
q , (17)

where the C(k)
q are spherical tensors [9]. The angular functions in

Table 1 may be easily transformed into spherical tensors and we
can use the eigenvector coefficients from either set of Gaussian
functions to do the calculation.

In Table 2 we give crystal field parameters derived from the ener-
gies and eigenfunction of Table 1. Each column of Table 2 uses
the eigenvector components from the corresponding section of
Table 1.

The calculation was set up to restrict the geometry to C3vand
there is a threefold axis approximately along X. However, the
expected twofold degeneracies are not exact due to rounding errors.
The functions (or parameters) may be rotated to make the Z-axis the
unique axis, so that to a good approximation we only have the three
parameters B2

0, B4
0, and B4

3, that we would expect for C3v symmetry.
Note that even these three parameters could not be determined
from the energies (since there are only two energy differences) let
alone the parameter set given in Table 2.

More sophisticated calculations, such as those in Ref. [3], opti-
mize separately for each energy level. The method described here
could still be used in those cases. There is no requirement for the
original eigenvectors V to be orthonormal, so eigenvector compo-
nents from different calculations may be combined to derive an
effective Hamiltonian.

5. Conclusions

In this paper we have derived and demonstrated a simple
method for extracting effective Hamiltonian parameters such as
“crystal–field” parameters from ab initio calculations. Only the ab
initio energies and eigenvector components corresponding to the
states of interest are required. Details of the eigenvector compo-
nents outside of the model space are not required. This method
should be applicable to the analysis of a variety of ab initio calcula-
tions.
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